A Language Model-based Generative Classifier for Sentence-level Discourse Parsing

Ying Zhang Hidetaka Kamigaito Manabu Okumura

{ zhang, kamigaito, oku } @ lr.pi.titech.ac.jp

- Motivation
- Language Model-based Generative Classifier (LMGC)
- Experiment
- Results
- Conclusion

Motivation - Rhetorical Structure Theory

• Rhetorical Structure Theory (RST) is applied to describe an internal discourse structure for the text as a constituent tree (Mann and Thompson, 1988).

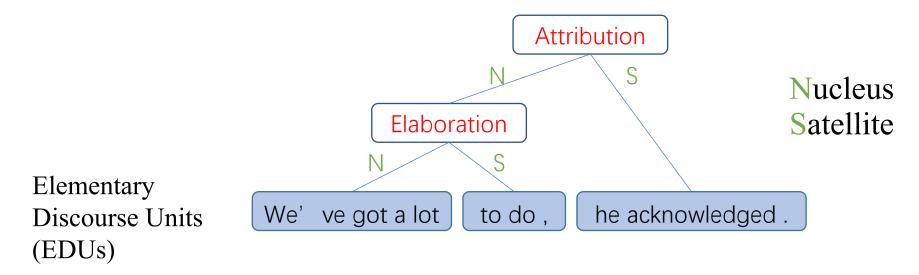


Figure 1. An example RST discourse tree

Motivation - Related Work

- **Discourse segmentation**: a task to detect EDU boundaries in a given text.
- **Discourse parsing**: a task to link spans for detected EDUs.

Most prior work is on the basis of discriminative models P(y|x), which learn mapping from input texts x to predicted labels y.

The number of labeled RST discourse trees is restricted.

Motivation - Related Work

• Thus, there still remains room for improving model performance by **considering mapping from predictable labels to input texts** to exploit more label information.

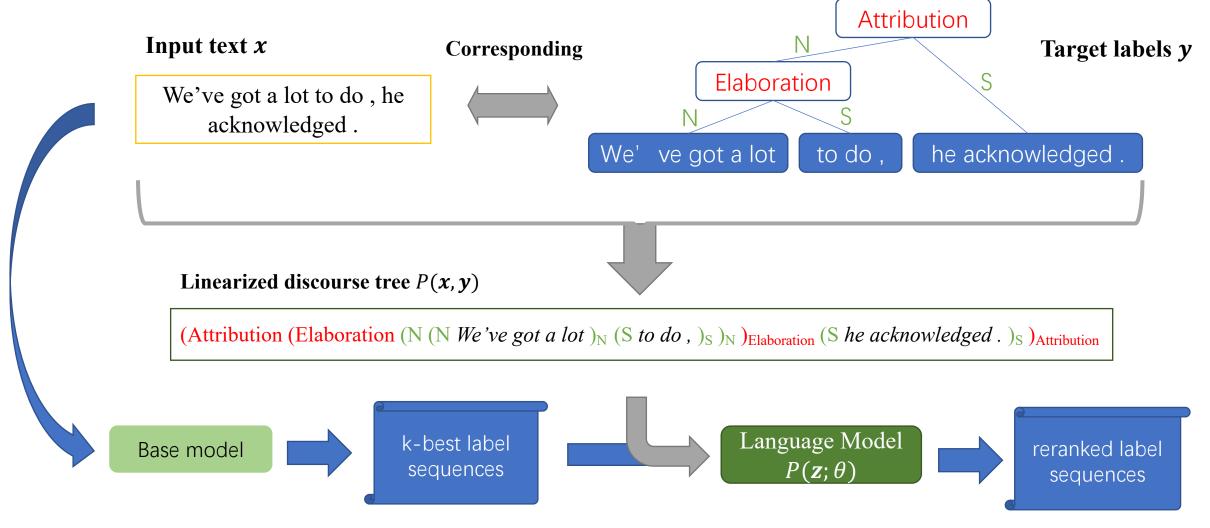
In this research, we propose a *language model-based generative classifier* (LMGC) as a reranker for both discourse segmentation and sentence-level discouse parsing.

- A BERT-style bidirectional Transformer encoder (Devlin et al., 2019)
- Joint probability P(x, y) of an input text and its predictable labels
- Adopt pre-trained language models such as MPNet (Song et al., 2020)

- Motivation
- Language Model-based Generative Classifier (LMGC)
- Experiment
- Results
- Conclusion

LMGC - Overview

• Predicting joint probability P(x, y) for a linearized discourse tree based on the language model.



LMGC - Joint Representation

Sentence with EDU boundary labels P(x, e)

 e_1 [EDU] e_2 [EDU] e_3 [EDU]

Sentence with span labels P(x, e, s)

 $(\text{Span } (\text{Span } e_1)_{\text{Span}} (\text{Span } e_2)_{\text{Span}})_{\text{Span}} (\text{Span } e_3)_{\text{Span}}$

Sentence with nuclearity labels P(x, e, u)

 $(N (N e_1)_N (S e_2)_S)_N (S e_3)_S$

Sentence with relation labels P(x, e, r)

 $(\text{Span}(\text{Span} e_1)_{\text{Span}} (\text{Elaboration } e_2)_{\text{Elaboration}})_{\text{Span}} (\text{Attribution } e_3)_{\text{Attribution}}$

 e_i represents the corresponding EDU for sentence We' ve got a lot to do, he acknowledged.

LMGC - Joint Probabilities

Follow the decomposition of pseudo-log-likelihood scores (PLL) (Salazar et al., 2020), we decompose and calculate logarithmic P(z) for sequence z = (z₁,..., z_a) as follows:

$$\log P(\mathbf{x}, \mathbf{y}) = \log P(\mathbf{z}; \theta) \approx PLL(\mathbf{z}; \theta) \approx \sum_{t=1}^{a} \log P(z_t | z_{< t}, z_{> t}, M_t; \theta)$$

 $M_t: [MASK]$ Joint sequence z: ? 've got a lot [EDU] to do , [EDU] he acknowledged . [EDU]

We choose pretrained masked and permuted language modeling (MPNet) (Song et al., 2020) as our language model and $P(z_t|z_{< t}, z_{> t}, M_t; \theta)$ is computed by two-stream self-attention (Yang et al., 2019).

LMGC - Label Embedding

Joint sequence z: We've got a lot [EDU] to do, [EDU] he acknowledged. [EDU]

Definition of [EDU] : elementary discourse units are the minimal building blocks of a discourse tree

• LMGC – Enhance :

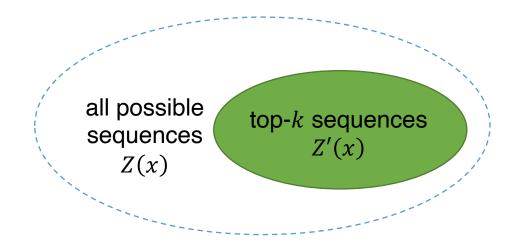
Embedding of [EDU] = Ave (Embedding of elementary, Embedding of discourse,

> ..., Embedding of tree)

• LMGC – Extend :

Joint sequence **z**: *We've got a lot* **[EDU]** *to do*, **[EDU]** *he acknowledged*. **[EDU]** [EDU] :elementary discourse units are the minimal building blocks of a discourse tree

LMGC – Objective function



Z'(x) is generated by a base model.

We denote $z_g \in Z(x)$ as the correct joint sequence of x and assume that O_a lists all permutations of set $\{1, 2, ..., a\}$.

For $z \in Z'(x) \cup \{z_g\}$, we train the model parameter θ in LMGC by maximizing the following expectation over all permutations:

$$\mathbb{E}_{o \in O_a} \sum_{t=c+1}^{a} [I_z \log P(z_{o_t} | z_{o_{c}}; \theta) + (1 - I_z) \log(1 - P(z_{o_t} | z_{o < t}, M_{o_{>c}}; \theta))]$$

where I_z is the indicator function, defined as follows:

$$I_{z} := \begin{cases} 1 & if \ z = z_{g}, \\ 0 & if \ z \neq z_{g} \end{cases}$$

c : the number of non-predicted tokens $z_{o_{\leq c}}$. $M_{o_{>c}}$: the mask tokens [MASK] at position $o_{>c}$.

- Motivation
- Language Model-based Generative Classifier (LMGC)
- Experiment
- Results
- Conclusion and Future Work

Task	Train	Valid	Test
(a) Segmentation	6,768	905	991
(b) Parsing w/ gold segmentation	4,524	636	602
(c) Parsing w/ auto segmentation	_	861	951

Table 1: The number of sentences for each task.

RST Discourse Treebank (RST-DT) corpus Sentences

(a) Segmentation

Micro-averaged precision, recall, F_1 score for EDUs.

(b) Parsing w/ gold segmentation

Micro-averaged F_1 score for span, nuclearity and relation labels.

(c) Parsing w/ auto segmentation

Micro-averaged F_1 score for EDUs, span, nuclearity and relation labels.

• Significance test: paired bootstrap resampling.

Experiment - Settings

- Pretraind language model MPNet (Song et al., 2020)
- Base segmenter
- Base parser
- Compared model

BiLSTM-CRF (Wang et al., 2018b) 2-stage Parser (Wang et al., 2017) GPTLM (GPT2-based language model generative classifier) 20

- Tuned top-*k* (training)
- Tuned top-k (prediction) 5

- Motivation
- Language Model-based Generative Classifier (LMGC)
- Experiment
- Results
- Conclusion

Results - (a) Segmentation

Model	Precision	Recall	<i>F</i> ₁
Oracle	97.73	98.67	98.20
Pointer-networks*	93.34	97.88	95.55
Base segmenter	92.22	95.35	93.76
GPT2LM _e	94.05	95.72	94.88
LMGC _e	95.31	97.56	96.43†
Enhance _e	95.54	97.93	96.72 †
Extend _e	95.05	97.86	96.44†

Table 2: Results for the discourse segmentation task.

* : reported score by Lin et al. (2019). \dagger : the score is significantly superior to GPT2LM with a p-value < 0.01.

Results - (b) Parsing w/ gold segmentation

Model	Span	Nuclearity	Relation
Oracle	98.67	95.88	90.07
Pointer-networks*	97.44	91.34	81.70
Base parser	97.92	92.07	82.06
GPT2LM _r	96.35	88.11	77.86
LMGC _s	98.23‡	92.31	82.22
Enhance _s	98.27‡	92.39	82.42
LMGC _u	98.31‡	94.00 †	83.63†
Enhance _u	98.31 †	93.88†	83.56†
LMGC _r	98.00	93.09†	83.99†
Enhance _r	98.12	93.13†	84.69†

Table 3: Results for the sentence-level discourse parsing task with gold segmentation.

 \dagger , \ddagger : the score is significantly superior to the base parser with a p-value < 0.01 and < 0.05, respectively.

Results - (c) Parsing w/ auto segmentation

Model	Seg	Parse		
		Span	Nuclearity	Relation
Pointer-networks*	-	91.75	86.38	77.52
Oracle _{seg}	98.24	-	-	-
Base segmenter	93.92	-	-	-
GPT2LM _e	95.03	-	-	-
LMGC _e	96.51	-	-	-
Enhance _e	96.79	-	-	-
Extend _e	96.48	-	_	-
Oracle	-	93.95	91.25	85.93
Base parser	-	93.53	88.08	78.75
GPT2LM _r	-	92.02	84.20	74.49
LMGC _s	-	93.96‡	88.46	79.25
Enhance _s	-	94.00 †	88.50	79.33
LMGC _u	-	93.96†	89.90 †	80.33†
Enhance _u	-	93.92‡	89.74†	80.22†
LMGC _r	-	93.65	89.08†	80.57†
Enhance _r	-	93.73	89.16†	81.18†

Table 4: Results for the sentence-level discourse parsing task with automatic segmentation.

- Motivation
- Language Model-based Generative Classifier (LMGC)
- Experiment
- Results
- Conclusion

- As a reranker, LMGC achieved the state-of-the-art performances in both discourse segmentation and sentence-level discourse parsing.
- The experimental results showed the potential of constructing label embeddings from token embeddings by using label descriptions.